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We investigate the effect of cell size on the energetics of vacancies in Aluminum using orbital-free density
functional theory with nonlocal kinetic-energy functionals. Extending the recently developed coarse-graining
techniques based on quasicontinuum reduction to include nonlocal kinetic-energy functionals, we consider cell
sizes up to a million atoms in this study. We find remarkable cell-size effects that are present in computational
domains consisting up to 103–104 atoms, even in simple defects such as vacancies. These results indicate the
presence of important long-ranged interactions that have not been considered in prior electronic-structure
studies of defects conducted on a few hundred atoms. These cell-size effects are more striking in the computed
divacancy binding energies, where vacancies are found to repel each other in small computational cells but
become attractive in larger computational cells representative of realistic vacancy concentrations.
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I. INTRODUCTION

Defects in materials play a significant role in influencing a
wide range of materials properties. Examples include the role
of vacancies in creep, spalling, and aging, dislocations in
metal plasticity, dopants in semiconductor properties, and
domain walls in ferroelectric properties. These defects,
though present in small concentrations—for instance, a few
parts per million in the case of vacancies—affect material
properties at macroscopic scales. In the past decade, many
efforts have focused on an electronic-structure study of de-
fects in materials.1–7 However, due to the computational
complexity of electronic-structure theories, these studies
have been restricted to periodic geometries with at most a
few hundred atoms in most cases. These conventional Fou-
rier space calculations, which have provided tremendous in-
sights into a wide range of materials properties in the past
decade, suffer from some important limitations in the study
of defects. For instance, the accessible cell-sizes cannot cap-
ture the long-ranged nature of elastic and electronic fields
that may have a significant influence on the behavior of de-
fects as will be demonstrated in this work. Further, the re-
strictive assumption of periodicity is not geometrically com-
patible with the elastic deformations produced by many
defects, and thus only artificial configurations of defects,
such as quadrapolar arrangement of dislocations, can be
studied. Moreover, the small cell-sizes used in electronic
structure studies correspond to unrealistically high concen-
tration of defects that are rarely, if ever, realized in nature.

The recent development of the quasicontinuum reduction
in orbital-free density functional theory �QC-OFDFT� �Ref.
8� has enabled the consideration of cell-sizes on the order of
millions of atoms, thus making possible an electronic-
structure study of defect properties using orbital-free density
functional theory without cell-size and periodicity restric-
tions. This quasicontinuum reduction was based on �i� a local
variational real-space formulation of the ground-state
energy;9 �ii� a finite-element discretization of the
formulation;9 �iii� an adaptive coarse graining of the finite-
element basis providing higher resolution where necessary

while coarsening elsewhere.8 The method, as an initial dem-
onstration, was developed using the local Thomas-Fermi-
Weizsäcker family of kinetic-energy functionals. Using these
local kinetic-energy functionals, a study on monovacancy
formation energy and divacancy binding energies in alumi-
num showed cell-size effects up to computational domains
containing a few thousand atoms, which are much larger than
the conventional cell-sizes considered in vacancy calcula-
tions. However, later investigations10 suggested that the ob-
served large cell-size effects may be a result of the use of
inaccurate local kinetic energy functionals, and that such ef-
fects may not be present upon the use of the more accurate
nonlocal kinetic-energy functionals.11,12

In this work, we implement a local real-space formulation
of the nonlocal kinetic-energy functionals11,12 based on the
ideas developed in Ref. 13, which then allows the extension
of the QC-OFDFT method to include nonlocal kinetic-energy
functionals. We subsequently revisit the problem of cell-size
effects on monovacancy formation energy and divacancy
binding energies in aluminum using the nonlocal kinetic-
energy functionals. Results from this study show remarkable
cell-size effects on the energetics of vacancies, confirming
the previous observations8 on the presence of long-ranged
interactions governing the energetics of defects that have
mostly been ignored thus far in electronic structure studies of
defects.

II. METHODOLOGY

The ground-state energy in density functional theory is
given by �cf., e.g., Ref. 14 and 15�

E�u,R� = Ts�u� + Exc�u� + J�u,R� , �1�

where u=�� is the square-root electron-density; R
= �R1 , . . . ,RM� is the collection of nuclear positions in the
system; Ts is the kinetic energy of noninteracting electrons;
Exc is the exchange-correlation energy; and J denotes the
electrostatic interaction energy between electrons and nuclei.
In OFDFT, Ts is modeled using explicit functional forms of
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electron density, and the most widely adopted transferable
functionals have the following representation11–13,16,17

Ts�u� =
3

10
�3�2�2/3� u10/3�r�dr +

1

2
� ��u�r��2dr + Tk�u� .

�2�

In the above expression, the first term is the Thomas-Fermi
contribution, the second term represents the von-Weizsäcker
correction, and Tk denotes the nonlocal kernel energy. In the
above expression and those to follow, Hartree atomic units
are used unless noted otherwise. The functional form of Tk is
given by

Tk�u� =� � u2��r�K�,���r − r��;u�r�,u�r��	u2��r��drdr�,

�3�

where parameters �, �, and the kernel K�,� are chosen such
that the kinetic-energy functional satisfies the Lindhard sus-
ceptibility function in Fourier space �cf., e.g., Ref. 15�. Fur-
ther, based on the dependence or independence of kernel
K�,� on u, these kernels are often referred to as density-
dependent �DD� or density-independent �DI� kernels.11,12 It is
a common practise to decompose the DD kernels into a se-
ries of DI kernels through a Taylor expansion about a refer-
ence density,12,13 and a similar treatment is considered in this
work.

The various components of energy in Eq. �1� are local in
real space, except the electrostatic interaction energy and the
kernel energy that are extended in real space. We now pro-
ceed to develop a local variational real-space formulation of
OFDFT which is central to the coarse-graining techniques
introduced subsequently. To this end, following the work in
Ref. 9, the electrostatic interactions are reformulated as the
following local variational problem

J�u,R� = − min
�
� 
 1

8�
����r��2 − �u2�r� + b�r;R����r��dr

�4�

by taking recourse to the Poisson equation and estimating the
electrostatic potential � of the charge distribution. In the
above expression, b�r ;R� denotes a regularized nuclear
charge distribution, which, in pseudopotential calculations,
represents a nuclear charge distribution corresponding to a
pseudopotential. We now consider the local reformulation of
the nonlocal kernel energies. We present the formulation in
the context of DI kernel energies, and DD kernel energies are
reformulated in a similar manner. To this end, we define the
following potentials:

V��r� =� K�,���r − r���u2��r��dr�,

V��r� =� K�,���r − r���u2��r��dr�. �5�

Taking the Fourier transform of the above expressions, we

obtain, V̂��k�= K̂�,��k�u2�̂�k�, V̂��k�= K̂�,��k�u2�̂�k�. Fol-

lowing the ideas developed in Ref. 13, K̂�,� can be approxi-
mated to very good accuracy using a sum of partial fractions
of the following form:

K̂�,��k� � 

j=1

m
Aj�k�2

�k�2 + Bj
, �6�

where Aj, Bj, j=1, . . . ,m are constants, possibly complex,
that are determined using a best fit approximation �cf., Ref.
13�. We now define

V̂�j
�k� =

Aj�k�2

�k�2 + Bj
u2�̂�k� j = 1, . . . ,m , �7a�

V̂�j
�k� =

Aj�k�2

�k�2 + Bj
u2�̂�k� j = 1, . . . ,m . �7b�

Taking Fourier transform of Eq. �7�, we obtain a system of
Helmholtz equations given by

− �2V�j
�r� + BjV�j

�r� + Aj�
2u2��r� = 0 j = 1, . . . ,m ,

�8a�

− �2V�j
�r� + BjV�j

�r� + Aj�
2u2��r� = 0 j = 1, . . . ,m .

�8b�

Under the approximation given by Eq. �6�, the potentials in
Eq. �5� now reduce to V��r�=
 j=1

m V�j
�r� ,V��r�=
 j=1

m V�j
�r�.

By defining ��j
�r�=V�j

�r�−Aju
2��r� and ��j

�r�=V�j
�r�

−Aju
2��r� for j=1. . .m, which we refer to as kernel poten-

tials, we rewrite Eq. �8� in terms of these kernel potential to
obtain the following Helmholtz equations

− �2��j
�r� + Bj��j

�r� + AjBju
2��r� = 0 j = 1, . . . ,m ,

�9a�

− �2��j
�r� + Bj��j

�r� + AjBju
2��r� = 0 j = 1, . . . ,m .

�9b�

Expressing these Helmholtz equations in a variational form,
we reformulate the nonlocal kernel energies in Eq. �3� as the
following local saddle-point problem:

Tk�u� = min
�� j

max
�� j



j=1

m �� 
 1

AjBj
� ��j

�r� · ���j
�r�

+
1

Aj
��j

�r���j
�r� + ��j

�r�u2��r� + ��j
�r�u2��r�

+ Aju
2��+���r��dr� . �10�

Using the local reformulations of the extended interactions in
Eqs. �4� and �10�, the ground-state energy in OFDFT can
now be expressed as a local variational problem in real-space
with the independent variables comprising of the positions of
nuclei �R�, and the electronic fields constituted by square-
root electron-density �u�, electrostatic potential ���, and the
kernel potentials ���j

,��j
, j=1, . . . ,m�. We employ a finite-
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element basis,18 which is consistent with the local and varia-
tional structure of the formulation, to numerically obtain the
ground-state solution. To test the viability of the proposed
approach, we first computed the bulk properties of alumi-
num. We conducted the study for both DI kernel energy
with �� ,��= 5

6 �
�5
6 and the Wang-Govind-Carter Density-

Dependent �WGC-DD� kernel energy12 which is a widely
used kinetic energy functional in OFDFT to describe alumi-
num. In all our studies, the kernels are approximated by a
sum of four partial fractions �m=4 in Eq. �6�	, and the suf-
ficiency of this approximation will be demonstrated from the
results �cf. Table I�. In the case of WGC-DD model, the
kernel energy is expanded about the average bulk electron
density. We used the local-density approximation for ex-
change correlation energies19 and the Goodwin-Needs-Heine
pseudopotential for aluminum �Ref. 20� in all our computa-
tions. The computed bulk properties of aluminum using the
proposed real-space formulation �OF-RS� are tabulated in
Table I, and are in good agreement with other calculations
using conventional Fourier-space techniques in OFDFT �OF-
FS� as well as Kohn-Sham density functional theory �KS-
DFT�.

We now present the key ideas behind the coarse-graining
techniques that enable electronic-structure calculations on
multimillion atoms systems at no significant loss of accuracy,
and refer to Ref. 8 for a more comprehensive discussion of
these ideas. These coarse-graining techniques based on QC
reduction were initially developed in the context of OFDFT
with local kinetic-energy functionals,8 and are extended here
to include the nonlocal interactions by coarse graining the
additional electronic fields represented by the kernel poten-
tials. In the presence of defects, both displacements of nuclei
and electronic fields vary rapidly near the defect core. How-
ever, away from the defect core the displacement fields are
smooth and vary only on a macroscopic length scale, and in
these regions the electronic fields are locally periodic21—i.e.,
electronic fields exhibit the periodicity of the underlying lat-
tice which changes only on a macroscopic length-scale. This
structure is exploited to develop the QC reduction in the
formulation. First, the displacement fields are resolved using
a finite-element triangulation �atomic mesh� of selected nu-
clei called representative nuclei, and interpolating the posi-
tions of all nuclei using the positions of these representative
nuclei �Fig. 1�a�	. The representative nuclei are chosen such
that all nuclei are resolved near the defect core whereas away
from defect core, where the displacement fields are smooth,
the resolution becomes coarser and a small fraction of the
nuclei is used to determine the positions of the rest. We now
turn to the representation and coarse graining of electronic
fields that exhibit subatomic oscillations. The electronic

fields are decomposed into predictor fields and corrector
fields. The predictor fields are represented on a finite-element
triangulation of unit cells �auxiliary mesh� residing inside
each element of the atomic mesh, and are computed using a
periodic calculation with the deformation of the underlying
lattice �Fig. 1�b�	. The predictor fields accurately capture the
locally periodic electronic structure away from the defect
core but provide a very inaccurate representation of the elec-
tronic structure close to the defect core. The corrector fields,
which correct for these inaccuracies, are thus represented on
a finite-element triangulation �electronic mesh� that is sub-
atomic close to the defect core and coarse grains away to
become superatomic �Fig. 1�c�	. As a matter of convenience,
the electronic mesh is chosen to be a uniform subdivision of
the atomic mesh, thus increasing the resolution in the correc-
tor fields with increasing resolution in the displacement field.
Using this decomposition, the independent variables of the
formulation reduce to the coarse-grained variables compris-
ing of the representative nuclei and corrector electronic
fields, which are computed using the proposed local real-
space variational formulation.

In order to asses the efficiency and the accuracy of the
proposed coarse-graining techniques using QC reduction, we
computed the monovacancy formation energy in aluminum
using a cell-size containing 16 384 nominal number of atoms
with differing levels of coarse graining that is controlled by
the number of representative nuclei. The results of this study
for OFDFT models with DI kernel ��� ,��= 5

6 �
�5
6 � and

TABLE I. Bulk properties of Aluminum.

Properties
KSDFT

�Refs. 12 and 13�
OF-FS OF-RS OF-FS OF-RS

�DI� �Ref. 11� �DI� �DD� �Ref. 12� �DD�

Bulk modulus �GPa� 68.5 71.9 72 72 71.72

Energy per atom �eV� −58.33 −58.33 −58.38 −58.33 −58.33

Lattice constant �a.u.� 7.62 7.59 7.58 7.61 7.6

nuclei

(b) (a) (c)

nuclei

nucleusnucleus

FIG. 1. �Color online� �a� Atomic mesh used to interpolate po-
sitions of nuclei away from the fully resolved defect core. �b� Aux-
iliary mesh used to sample the predictor fields within a unit cell. �c�
Electronic mesh used to represent the corrector fields. It has sub-
atomic resolution in the defect core, and coarsens away from the
defect core.
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WGC-DD kernel are shown in Fig. 2. As is evident, less than
200 representative nuclei in the case of DI kernel, and less
than 600 representative nuclei in the case of WGC-DD ker-
nel are sufficient to obtain convergence with respect to the
coarse graining. This significant reduction in the computa-
tional cost afforded by the proposed QC reduction makes
possible an electronic structure study of defects without cell-
size restrictions, where defects can be studied under naturally
occurring concentrations in real materials.

III. CELL-SIZE EFFECTS

We now proceed to investigate the cell-size effects in the
energetics of vacancies. To this end, using both DI and
WGC-DD OFDFT models, we computed the monovacancy
formation energy in aluminum for varying cell-sizes from 32
atoms to a million atoms, and these results are shown in Fig.
3. In the case of WGC-DD model, the kernel energy is ex-
panded about the average bulk electron-density before intro-
ducing the vacancy. Homogeneous Dirichlet boundary con-
ditions are imposed on the corrector electronic fields as well
as the displacement fields in all computations, which imply

that the perturbations in electronic and displacement fields in
the presence of these defects vanish on the boundaries of the
sample. The numerical parameters including mesh size and
coarse-graining rates are chosen such that the numerical error
in computed formation energies is less that 0.01 eV. The
monovacancy formation energy computed using a 32 atoms
computational cell is 1.33 eV for DI model and 0.54 eV for
WGC-DD model, and these results are in very good agree-
ment with those reported in the literature.10,12 DI kernels are
known to be inaccurate in predicting the monovacancy for-
mation energy in aluminum, which is estimated to be 0.51
eV using KSDFT on a 32 atoms computational cell10 and
0.66 eV from experiments.22 However, in this study, we fo-
cus our attention on the cell-size effects. As seen from Fig. 3,
there is a remarkable cell-size dependence in the computed
formation energy of a vacancy. These results indicate that
cell-sizes on the order of 103–104 atoms are required to ob-
tain convergence with respect to cell-size even in simple de-
fects such as vacancies. We attribute these cell-size effects to
the long-ranged nature of the displacement fields, which is
well known from studies on defects using continuum
elasticity,23–25 as well as the slower than expected decay in
the perturbations of electronic fields arising in the presence
of defects. Linear response theory suggests that the perturba-
tions in electronic fields decay exponentially away from the
defect-core, which is often referred to as screening.26 How-
ever, our numerical calculations suggest that nonlinear ef-
fects dominate up to a distance of 2–3 lattice units away
from the vacancy-core, only beyond which the expected ex-
ponential decay is observed. Moreover, the perturbations in
the electronic fields are strong enough to be felt up to a
distance of 5 lattice units from the vacancy.

The difference in monovacancy formation energies com-
puted using a commonly used 32 atoms cell-size and the
more realistic dilute limit corresponding to a million-atoms
cell-size is on the order of 0.1 eV, which may appear insig-
nificant at first. However, we note that the interaction ener-
gies between vacancies are on the order of 0.1 eV and are
significantly influenced by these cell-size effects. Figure 4
shows the cell-size dependence of the �100� and �110� diva-
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FIG. 2. �Color online� Convergence of coarse-graining
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cancy binding energies in aluminum, which is more striking.
In the case of WGC-DD OFDFT model, whose accuracy and
transferability has been verified by many numerical studies
and comparisons with KSDFT,10,12 the binding energies are
computed to be negative �repulsive� for small cell-sizes
while becoming positive �attractive� for larger cell-sizes cor-
responding to realistic vacancy concentrations of a few parts
per million. Thus, the cell-size effects not only change the
energetics quantitatively but even change the physics quali-
tatively.

IV. CONCLUSIONS

In conclusion, this study unambiguously establishes the
significant cell-size effects in the energetics of vacancies by
using the transferable WGC-DD OFDFT model for alumi-
num. Results from this study suggest that perturbations in
elastic and electronic fields which develop in the presence of
defects are long ranged, and, even in the case of simple de-
fects such as vacancies, are felt in cell-sizes containing up to
103–104 atoms. These long-ranged fields are found to influ-
ence the energetics of vacancies both quantitatively as well
as qualitatively. It is more likely than not that similar, or
stronger, cell-size effects may be present in defects such as
dislocations, surfaces and interfaces, and an accurate
electronic-structure study of these defects should account for
the physical interactions occurring on multiple length scales.

The reliability of WGC-DD OFDFT model in aluminum
has been established in the literature by benchmarking the
predictions on a wide range of periodic and defect properties
with KSDFT calculations.7,10 Thus, we expect that similar
cell-size effects may be present in energetics of vacancies
computed using KSDFT. But, an accurate cell-size study
with KSDFT to verify this will require the development of
coarse-graining techniques for KSDFT, which poses non-
trivial challenges due to the delocalized nature of the wave
functions and is currently a topic of investigation. Neverthe-
less, prior to the development of such coarse-graining tech-
niques for KSDFT, QC-OFDFT with WGC-DD kinetic en-
ergy functionals can be used to study various aspects of the
energetics of defects in aluminum without any cell-size re-
strictions. These include the computation of formation ener-
gies, migration energies, interaction energies of various de-
fects such as dislocations, surfaces, twin boundaries, which
can then be used to develop more accurate mesoscopic mod-
els of deformation and failure in metals.
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